ГАЙФУЛЛИН РАШИТ МИННЕБАЕВИЧ

НОВОЕ ДЕЗИНФИЦИРУЮЩЕЕ СРЕДСТВО ДЛЯ БРОЙЛЕРНОГО ПТИЦЕВОДСТВА

- 06.02.05 ветеринарная санитария, экология, зоогигиена и ветеринарно- санитарная экспертиза
- 06.02.02 ветеринарная микробиология, вирусология, эпизоотология, микология с микотоксикологией и иммунология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в закрытом акционерном обществе «Научнопроизводственный центр «Химтехно» и в федеральном государственном бюджетном образовательном учреждении высшего образования «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана»

Научный руководитель: доктор технических наук

Угрюмов Олег Викторович

Научный консультант: доктор ветеринарных наук, профессор

Равилов Рустам Хаметович

Официальные оппоненты: Киселев Андрей Леонидович – доктор

биологических наук, профессор кафедры зоогигиены и птицеводства имени А.К. Даниловой ФГБОУ ВО «Московская государственная академия ветеринарной медицины и биотехнологии – МВА имени

К.И. Скрябина»

Владимир Кузьмин Александрович доктор ветеринарных профессор, наук, заведующий кафедрой эпизоотологии имени В.П. Урбана ФГБОУ BO «Санкт-Петербургская государственная академия

ветеринарной медицины»

Ведущая организация: ФГБНУ «Всероссийский научно-

исследовательский институт ветеринарной

санитарии, гигиены и экологии»

Защита диссертации состоится «9» июня 2017 года в 14^{00} часов на заседании диссертационного совета Д 220.034.01 при ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана» по адресу: 420029, г. Казань, Сибирский тракт, 35.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана».

Автореферат разослан «___» _____ 2017 года и размещен на сайтах http://www.vak.ed.gov.ru и www.ksavm.senet.ru

Ученый секретарь диссертационного совета

Юсупова Галия Расыховна

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Для обеспечения высокого санитарного состояния и устойчивого благополучия промышленного птицеводства важное значение приобретают дезинфекционные мероприятия. проведения этих мероприятий в настоящее время разработаны и широко различные методы, которые должны проводиться применяются использованием экологически чистых, безвредных для людей и животных средств.

Несмотря на широкий ассортимент дезинфицирующих средств, разработанных к настоящему времени и выпускаемых отечественной и зарубежной промышленностью, постоянно проводится работа, направленная на поиск новых средств и форм антимикробных препаратов.

При этом в настоящее время особое внимание уделяется разработке импортозамещающих дезинфицирующих средств на основе отечественного сырья. Поэтому остро стоит вопрос о разработке и производстве новых дезинфицирующих средств, ориентированных на отечественную сырьевую базу (Угрюмов О.В., Яруллин Р.С., Хисамутдинов А.Г. и др., 2015).

<u>Степень разработанности проблемы.</u> Рынок дезинфицирующих средств довольно обширен и многообразен. Препараты, предназначенные для использования в разных направлениях, имеют отличительные друг от друга характеристики антимикробной эффективности.

Исходя из этого ведутся исследования по созданию дезинфектантов на основе перекисных, хлорсодержащих соединений, альдегидов, щелочей в комплексе с различными стабилизаторами и поверхностно-активными веществами (ПАВ), способствующими повышению стабильности растворов дезинфектантов и их бактерицидной активности. На перспективность данного направления в дезинфектологии указывают многие авторы (Удавлиев Д.И., 1989; Угрюмов О.В., 1998; Угрюмова В.С., Равилов А.З. и др., 2005; Шишко А.А. и др., 2005, Николаенко В.П., 2010).

Применение дезинфицирующих композиций на основе ПАВ позволяет в значительной мере повысить эффективность очистки наружных внутренних поверхностей технологического оборудования, стен, потолков производственных помещений, поверхностей со сложной конфигурацией – за счет пенообразующих свойств. Достоинства данных композиций заключается в следующем: наличие в композициях ПАВ резко снижает и ограничивает коррозионную активность дезинфицирующих средств, а так же приводит к значительному понижению поверхностного натяжения раствора и увеличению коэффициента растекания капель, что значительно усиливает дезинфицирующей бактерицидное действие композиции, образования на обрабатываемой поверхности сплошной пленки препарата при относительно меньшем расходе последнего и увеличения его срока воздействия (Николаенко А.В., 2002; Гатиатуллин И.Г., 2002; Зарипов М.Р., 2004).

Поверхностно-активные вещества — вспениватели, обладая высоким поверхностным натяжением, обеспечивают образование устойчивой пены, которая смачивает поверхность и пролонгирует действие дезинфицирующего средства, и тем самым снижает бактериальную обсемененность воздушной среды животноводческих и птицеводческих помещений.

Поэтому разработка композиционных препаратов является актуальной задачей.

<u>**Цель и задачи исследований.**</u> Целью исследований явилось разработка эффективного дезинфицирующего средства для бройлерного производства птицеводства.

В соответствии с указанной целью были поставлены следующие задачи:

- 1. Изучить бактерицидные свойства, широту спектра антимикробного действия и дезинфицирующую активность рабочих растворов препарата Натопен в лабораторных и производственных условиях;
 - 2. Изучить токсикологические свойства разработанного препарата;

- 3. Изучить эффективность препарата в качестве биоцидной добавки к побелочному материалу;
- 4. Изучить коррозионность и пенообразующие свойства нового препарата;
- 5. Оценить эффективность санации воздушной среды помещений при влажной дезинфекции;
- 6. Провести ветеринарно-санитарную экспертизу продукции бройлерного птицеводства, полученную после дезинфекции помещений и оборудования препаратом;
- 7. Определить экономическую эффективность санации помещений при влажной дезинфекции препаратом.

Научная новизна работы. Разработано новое пенообразующее дезинфицирующее средство Натопен на основе отечественного сырья (алкилбензиламмоний хлорида и едкого натра). Впервые изучены физикохимические, бактерицидные, антикоррозионные и пенообразующие свойства нового дезинфицирующего средства Натопен. Показана эффективность разработанного препарата в качестве биоцидной добавки к побелочным материалам. Установлено снижение бактериальной обсемененности воздушной среды птичников при проведении влажной дезинфекции новым препаратом Натопен. Впервые определена экономическая эффективность применения препарата Натопен в бройлерном птицеводстве.

Теоретическая и практическая значимость работы. В результате проведенных исследований разработано, научно-обосновано и предложено в практическое птицеводство дезинфицирующее средство Натопен. Разработаны режимы применения дезинфектанта, утверждены Инструкция по применению Натопена для дезинфекции объектов ветеринарного надзора и профилактики инфекционных болезней животных и птиц; технические условия ТУ 2132-060-54861661-2010 и получен сертификат соответствия № РОСС RU. ДВ 01.Н24913.

Методология и методы исследования. При изучении физикохимических и токсикологических свойств, бактерицидной активности, пенообразующей активности коррозионной И препарата Натопен использовали микробиологические (культивирование и идентификация на питательных средах, световую и электронную микроскопию), физикохимические (гравиметрические и электрохимические) методы, клиниколабораторные исследования (клинический статус, гематологические исследования), токсикологические (оценка острой токсичности, местно раздражающего и кожно-резорбтивного действия препарата), ветеринарносанитарную экспертизу яиц и продуктов убоя птицы, биохимические исследования крови, статистическую обработку результатов исследования.

Результаты лабораторных исследований подтверждены производственными опытами. Общая площадь цехов, подвергнутых влажной дезинфекции, составила 230688 m^2 .

Проведен экономический анализ эффективности применения нового препарата.

Основные положения, выносимые на защиту:

- 1. Дезинфицирующая активность препарата Натопен в лабораторных и производственных условиях.
- 2. Препарат Натопен в качестве биоцидной добавки к побелочным материалам.
 - 3. Токсикологические свойства препарата Натопен.
- 4. Ветеринарно-санитарная оценка продуктов птицеводства после проведения дезинфекции препаратом Натопен.
 - 5. Антикоррозионные и пенообразующие свойства препарата Натопен.

Степень достоверности и апробация результатов. Научные выводы и практические предложения теоретически и экспериментально обоснованы, что подтверждается фактическими данными. Они логически вытекают из содержания работы, согласуются с поставленными целями и задачами.

Основные результаты диссертации представлены и обсуждены на научно-практических международных конференциях: Международная научно-практическая конференция «Актуальные проблемы научного и 2012Γ; кадрового обеспечения инновационного развития $A\Pi K \gg$, Всероссийская научно-практическая конференция «Ветеринарная медицина и зоотехния, образование, производство: Актуальные проблемы», 2014 г.; Международная научная конференция «Опыт, проблемы и пути их решения», посвященная 95-летию зоотехнического образования в Казанской государственной академии ветеринарной медицины им. Н.Э.Баумана, 2015г.; «Комплексное обеспечение благополучного Семинар развития животноводства» (г. Казань 2009, 2010г.; г. Краснодар 2010г., г. Уфа 2010г.);

<u>Публикации.</u> По материалам диссертации опубликовано 5 научных работ, в том числе 4 в изданиях, рекомендованных ВАК РФ.

2 ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2.1 Материалы и методы исследования

Диссертационная работа выполнена в ЗАО «Научно-производственный центр «Химтехно» и ФГБОУ ВО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана».

Отдельные исследования проведены в ветеринарно-диагностической лаборатории ООО «Челны-Бройлер» аттестат аккредитации № РОСС RU.0001.22 ПЮ 17, лицензия №16 0000 43 06.04. Производственные испытания проведены на базе промышленных цехов ООО «Челны-Бройлер» - площадки ремонтного молодняка, родительского стада, по выращиванию бройлеров.

В процессе выполнения работы были использованы общепринятые штаммы микроорганизмов: Staphylococcus aureus, Salmonella pullorumgallinarum, E.coli, Bacillus cereus, Aspergillus niger, обладающих характерными культуральными и морфологическими свойствами.

Микроорганизмы, используемые для определения бактерицидности препарата Натопен, культивировались на общепринятых питательных средах.

Идентификацию выросших колоний вели визуально, используя стереоскопический микроскоп МБС-9, руководствуясь при этом видовыми дифференциальными признаками микроорганизмов.

Для идентификации микроорганизмов из выросших колоний готовили мазки, которые окрашивали по Граму и просматривали под иммерсионной системой светового микроскопа (Колычев Н.М. и сотр., 1996).

Бактерицидную активность Натопена определяли общепринятыми методами (Першин Г.Н., 1972; Вашков В.И., 1977). В этих целях использовали метод серийного разведения и метод батистовых тестов.

Фунгицидные свойства Натопена определяли общепринятыми методами (Першин Г.Н., 1971), используя при этом 2; 1; 0,5; 0,25; 0,125%- ные концентрации препарата. Экспозиция составляла 30-60 и 120 минут. Учет результатов проводили ежедневно в течение 14 суток; при этом отмечали наличие или отсутствие признаков роста культуры гриба Aspergillus niger.

Дезинфицирующие свойства препарата Натопен изучали применением тест-объектов. В качестве тест-объектов использовали тест-поверхности размером 10×10 см² из материалов, применяемых в птицеводстве (дерево, нержавеющая сталь, оцинкованное железо, кафель, пластмассы).

Для контаминации тест-объектов использовали свежеприготовленную взвесь тест-микроорганизмов E.coli, St. aureus, Bac. cereus, содержащую 500 тыс.микробных тел в 1 мл соответственно. Полученную взвесь наносили на тест-объекты в смеси со стерильной «биологической защитой».

Оценку качества дезинфекции проводили по наличию или отсутствию роста микроорганизмов.

В производственных условиях исследования проводились согласно методам, изложенным в методических указаниях «О порядке испытания новых дезинфицирующих средств для ветеринарной практики» (1987),

«Правилам проведения дезинфекции и дезинвазии объектов ветеринарного надзора» (2002), а также «Методике проведения производственных испытаний дезинфицирующего средства Натопен», утвержденной первым заместителем генерального директора ООО «Челны-Бройлер». Препарат применяли в концентрации 2%, экспозиция составляла 2 часа. При проведении влажной дезинфекции препаратом Натопен наряду с контролем влажной дезинфекции проведена оценка санации воздушной среды птичников при влажной дезинфекции методом седиментации; при этом учитывали общую бактериальную и грибковую обсемененность.

При изучении биоцидных свойств препарата в качестве побелочного материала использовали гашеную известь.

Токсикологические исследования Натопена проводили с учетом методических указаний «Оценка токсичности и опасности дезинфицирующих средств» (2002), Р 4.2.2643-10 «Методы лабораторных исследований и испытаний дезинфекционных средств для оценки их эффективности и безопасности».

Величину LD_{50} вычисляли по методу Кербера. Оценку местнораздражающего действия проводили согласно методическим указаниям «Оценка воздействия вредных химических соединений на кожные покровы и обоснование предельно-допустимых уровней загрязнения кожи» (1980) в однократных и повторных (10-12 аппликаций) опытах.

Ветеринарно-санитарную оценку мяса кур после проведения влажной дезинфекции птичников проводили общепринятыми методами.

Для санитарно-гигиенических исследований отбирали пробы тушек, руководствуясь ГОСТ Р 51447-99 (Мясо и мясные продукты. Методы отбора проб). При этом определяли органолептические, биохимические и бактериологические показатели. При органолептическом исследовании учитывали внешний вид, цвет, запах, консистенцию мышечной ткани и жира, состояние мышц на разрезе; прозрачность и аромат бульона.

Биохимические исследования проводили в вытяжке при соотношении

мяса и воды 1:3. Вытяжки из красных и белых мышц готовили отдельно.

Качественную реакцию на аммиак и соли аммония проводили с помощью реактива Несслера.

Определение продуктов первичного распада белков в бульоне проводили с сернокислой медью.

Ветеринарно-санитарную оценку качества мяса и яиц проводили на бройлерном кроссе КОББ-500 общепринятыми методами согласно «Инструкция по санитарно-микробиологическому контролю тушек, мяса птицы, птицепродуктов, яиц и яйцепродуктов на птицеводческих и птицеперерабатывающих предприятиях».

Коррозионную активность Натопена определяли по глубинному показателю коррозионной активности и скорости коррозии металла, а также электрохимическим методом при помощи индикатора скорости коррозии для мониторинга коррозионной агрессивности сред с накопителем информации и компенсатором омического сопротивления МОНИКОР-2. В качестве «холостой» коррозионной среды использовалась водопроводная вода сульфатного магниевого-кальциевого типа для хозяйственно-бытовых целей.

Пенообразование, пенообразующую способность исследуемого дезинфектанта и устойчивость полученных пен проводили методом продувания определенного объема воздуха через заданный объем испытуемого раствора с постоянной скоростью с использованием пористого стеклянного фильтра Шотта.

Для электронной микроскопии использовали взвесь микроорганизма Salmonella pullorum-gallinarum плотностью 2 млрд. микробных тел в 1мл физиологического раствора, которую подвергали воздействию препарата Натопен.

Для электронно-микроскопических исследований применяли негативное контрастирование. Полученные препараты рассматривали в электронном микроскопе просвечивающего типа с минилинзами ПЭМ-100 при инструментальном увеличении 15-45 тыс.

Экономическую эффективность рассчитывали по И.Н. Никитину и сотр. (1999).

Статистическую обработку данных проводили по методу Ойвина с использованием таблиц Стьюдента. Цифровой материал статистически обрабатывали на персональном компьютере по общепринятым методам вариационной статистики с использованием программы Microsoft Excel.

2.2 Физико-химическая характеристика препарата Натопен

Разработанное дезинфицирующее средство Натопен представляет собой композиционный препарат, содержащий в своем составе специально обработанную гидроокись натрия и четвертичное аммониевое соединение – алкилдиметилбензиламмоний хлорид. В результате взаимодействия четвертично-аммониевой соли с гидроокисью натрия происходит замена аниона хлора на гидроксилион, то есть получается соединение, которое обладает более высокой основностью, чем исходное соединение. По внешнему виду представляет собой гранулы светло-желтого цвета, без запаха, размером от 1 до 10 мм, хорошо растворим в воде.

$$\begin{bmatrix} CH_{3} \\ | \\ -CH_{2}-N-R \\ | \\ CH_{3} \end{bmatrix}^{+} Cl^{-} + NaOH \rightarrow \begin{bmatrix} CH_{3} \\ | \\ -CH_{2}-N-R \\ | \\ CH_{3} \end{bmatrix} OH^{-} + NaCl$$

$$R = C_{12} - C_{14}$$

В таблице 1 представлены основные физико-химические показатели препарата Натопен.

Из представленных в таблице 1 данных видно, что Натопен обладает выраженной щелочной реакцией, рН показатели растворов его в концентрациях от 0,06 до 2% колеблются в пределах от 12,00 до 12,24.

Таблица 1 - Физико-химические показатели препарата Натопен

№ п/п	Наименование показателя	Характеристика				
1.	Внешний вид	Гранулированный продукт от светло-желтого до бежевого цвета				
2.	Показатель концентрации водородных ионов 0,06-2% водных растворов средства (20°С), единиц рН при 28°С	12,06-12,24				
3.	Плотность 2% водного раствора средства (20°C)	1,020				
4.	Показатель преломления при 27,9°C	1,3385				

2.3 Исследование бактерицидных свойств препарата Натопен в лабораторных условиях

При изучении бактерицидных свойств препарата Натопен и его исходных компонентов установлено, что, если бактерицидная активность едкого натра и алкилбензиламмонийхлорида в отношении Е.coli составляет 1% при экспозиции 15 минут и 0,5% при экспозиции 60 минут, то бактерицидная активность препарата Натопен составляет 0,25% при экспозиции 15 минут и 0,125% при экспозиции 30 минут. В отношении St.aureus Натопен активен в концентрации 0,25%, экспозиции 15 минут и 0,125% при 30-ти минутной экспозиции, тогда как едкий натр активен лишь в 2% концентрации, при экспозиции 15 минут, алкилбензиламмоний хлорид – 1% концентрации при той же экспозиции. Аналогичные данные были получены и при изучении спороцидных свойств.

Если спороцидная активность едкого натра и алкилбензиламмоний хлорида в отношении Вас.cereus составляет 2% при экспозиции 60 минут и 3% при экспозиции 15 минут, то Натопен проявляет спороцидный эффект в 0,5%-ной концентрации при экспозиции 30 минут и 0,25% при экспозиции 60 минут (Таблица 2).

Таблица 2 - Результаты изучения бактерицидных свойств препарата Натопен и его исходных компонентов

Продорож	Концен-	E.coli			Bac.cereus			St.aureus		
Препарат	трация, %	15	30	60	15	30	60	15	30	60
	0,125	+	+	+	+	+	+	+	+	+
	0,25	+	+	+	+	+	+	+	+	+
Едкий натр	0,5	+	+	-	+	+	+	+	+	+
Едкии патр	1,0	-	-	-	+	+	+	+	-	-
	2	-	-	-	+	+	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	0,125	+	+	+	+	+	+	+	+	+
	0,25	+	+	+	+	+	+	+	+	-
Алкилбензилам-	0,5	+	+	-	+	+	+	+	+	-
моний хлорид	1,0	-	-	-	+	+	+	-	-	-
	2	-	-	-	+	+	-	-	-	-
	3	-	-	-	-	-	-	-	-	-
	0,125	+	-	-	+	+	+	+	ı	-
Натопен	0,25	-	-	-	+	+	ı	-	ı	-
Патопоп	0,5	-	-	_	+	-	ı	_	_	-
	1,0	-	-	-	-	-	-	-	-	-
Контроль микро- организмов		+	+	+	+	+	+	+	+	+

Примечание: «+» - обильный рост исходной культуры;

«-» - отсутствие роста исходной культуры.

При изучении фунгицидных свойств Натопена установлена его высокая активность в отношении гриба Aspergillus niger, являющегося представителем наиболее патогенного вида грибов, вызывающего грибковые заболевания, контаминирующего оборудование, в частности, выводные шкафы в птицеводстве и продуцирующего микотоксины, вызывающие микотоксикозы. Фунгицидная активность проявляется в 1% концентрации при экспозиции 60 минут.

Большое значение при разработке дезинфицирующих средств в птицеводстве представляет Salmonella pullorum-gallinarum.

Минимальная бактерицидная концентрация Натопена в отношении Salmonella pullorum-gallinarum составляла 0,25% при экспозиции 30 мин. С ее увеличением до 0,5 и 1% данный показатель проявляется при экспозиции 15 мин.

2.4 Дезинфицирующая активность препарата Натопен на тестобъектах

Учитывая высокую бактерицидную активность Натопена были проведены опыты по изучению дезинфицирующей активности. Результаты приведены в таблице 3.

Таблица 3 – Изучение дезинфицирующих свойств препарата Натопен на тестобъектах

	Vouusymouya	Эмонориния	Тест-микробы					
Тест-объекты	Концентрация, %	Экспозиция, час	E.coli	St.aureus	Bac.			
	70	100	Z.con	Stadieds	cereus			
Vada	1	1-2	_	-	_			
Кафель	2	1-2	-	-	-			
Метлахская	1	1-2	-	-	-			
плитка	2	1-2	-	-	-			
Кирпич	1	1-2	-	-	-			
силикатный	2	1-2	-	-	-			
Бетон	1	1-2	-	-	-			
ретон	2	1-2	-	-	-			
Порово	1	1-2	-	-	-			
Дерево	2	1-2	-	-	-			
Контроль	Обильный рост							

Примечание: «+» - обильный рост исходной культуры; «-» отсутствие роста исходной культуры.

Из данных таблицы 3 видно, что дезинфицирующая активность Натопена в концентрациях 1-2%, при минимальной экспозиции (1 час) проявилась в отношении кишечной палочки, золотистого стафилококка и Вас. cereus. Все виды тест-объектов (кафель, дерево, метлахская плитка,

кирпич силикатный и т.д.), инфицированные данными видами микроорганизмов с биологической защитой, в качестве которой был использован стерильный навоз, обеззараживались при применении 1-2% концентраций Натопена, при минимальной экспозиции 1 час. Смывы, взятые с опытных тест-объектов, были стерильными. Последнее время с целью пролонгированного действия дезосредств при проведении профилактической и вынужденной дезинфекции в побелочных материалах используют биоцидные добавки.

Исходя из этого, нами проведены исследования бактерицидных свойств Натопена в качестве биоцидной добавки. При использовании Натопена в качестве биоцидной добавки к извести установлена его высокая активность. Так, при применении 0,25-0,5% раствора Натопена не наблюдается рост тест-микробов E.coli, St.aureus, Bac.cereus.

2.5 Изучение токсикологических свойств препарата Натопен

При разработке и внедрении новых дезинфицирующих средств наряду с изучением их биологической активности необходимым является изучение токсикологических свойств. Согласно Методическим указаниям «Оценка токсичности и опасности дезинфицирующих средств» (МУ 1.2.1105-02), утвержденным Главным государственным санитарным врачом РФ 10 февраля 2002 г. Учитывая данное положение, нами проведено изучение токсикологических свойств разработанного композиционного препарата Натопен.

В результате проведенных исследований установлено, что максимально переносимая доза (МПД) Натопена для взрослых белых мышей составляет 800 мг/кг; абсолютно-смертельная доза -1300 мг/кг; LD_{50} - 1065 мг/кг.

Исходя из этого, препарат Натопен согласно ГОСТу 12.1.007-76 относится к умеренно опасным веществам (III класс опасности). При этом, необходимо отметить, что токсичность едкого натра составляет LD_{100} - 800 мг/кг; LD_{50} -435 мг/кг; МПД – 150 мг/кг. Таким образом, препарат Натопен по параметрам острой оральной токсичности в 2,5 раза менее токсичен, чем

едкий натр.

Анализ данных токсикологических исследований показывает, что дезинфицирующее средство Натопен относится к III классу опасности (ГОСТ 12.1.007-76), обладает умеренно раздражающим действием на конъюнктиву глаз, слабым местно-раздражающим и кожно-резорбтивным действиями.

При исследовании клинического статуса, гематологических и биохимических показателей крови птицы, содержащейся в клетках и помещениях после проведения влажной дезинфекции, не выявлено закономерных изменений (Р>0,05). Результаты исследований представлены в таблице 4.

Таблица 4 — Результаты изучения влияния препарата Натопен на гематологические и биохимические показатели крови ремонтного молодняка кур бройлерного направления до и после проведения влажной дезинфекции

ajp spemiore nump	Контрольная группа				Опытная группа				
Показатель	80 дней		140 д		80 дней		140 дней		
	M m		M	m	M	m	M	m	
Гематологические:									
Эритроциты, 10 ¹² /л	3	0,2	3,7	0,3	2,9	0,3	3,7	0,2	
Лейкоциты, 10^9 /л	35,9	0,5	36,1	0,5	35,9	0,5	37,1	0,1	
Лейкоформула,%:									
базофилы	2,1	0,4	2,4	0,2	2,7	0,4	2,5	0,1	
эозинофилы	3,2	0,3	3,1	0,3	2,4	0,3	3,1	0,3	
псевдоэозинофилы									
юные	0,3	0,1	0,8	0,2	0,2	0,2	0,9	0,2	
палочкоядерные	2,1	0,3	1,8	0,1	1,58	0,1	2,1	0,2	
сегментоядерные	26,4	0,2	27,1	0,1	28,0	0,4	27,5	0,2	
лимфоциты	62,7	0,4	61,78	0,7	61,6	0,9	60,7	0,7	
моноциты	3,2	0,21	3,02	0,18	3,48	0,28	3,20	0,33	
Биохимические:									
Гемоглобин, г/л	88,2	1,4	87,6	2,1	86,4	2,4	88,2	1,2	
Общий белок, г/л	34,4	1,2	36,2	1,3	36,2	1,4	35,7	2,1	
Альбумины, г/л	24,0	0,8	23,8	0,1	23,6	0,1	24,6	0,3	
Глобулины, г/л									
α	4,2	0,4	4,8	0,7	5,0	1,2	4,7	0,8	
β	3,2	0,5	3,9	0,4	3,9	0,4	3,4	0,5	
γ	3,0	0,6	3,7	0,5	3,7	0,6	3,0	0,2	
$(P \ge 0.05)$									

2.6 Коррозионные и пенообразующие свойства препарата Натопен

Одним из требований, предъявляемых к дезинфицирующим средствам, является низкая коррозионная активность.

При этом необходимо отметить, что наличие поверхностно-активных веществ в значительной степени позволяет повысить эффективность дезинфекции поверхностей, имеющих сложную конфигурацию, снижает его агрессивность, уменьшая коррозию металлических конструкций, и повышает пенообразующий эффект.

При сравнительном изучении коррозионной активности вышеназванных препаратов электрохимическим методом установлено, что пик коррозионной активности для едкого натра приходится на 30 минут и составляет 1,9мм/год, а коррозионность препарата Натопен в течение 30 минут составляет 0,15 мм/год. Защитный эффект ингибитора равен 95,3%. Результаты исследований представлены в диаграмме 1.

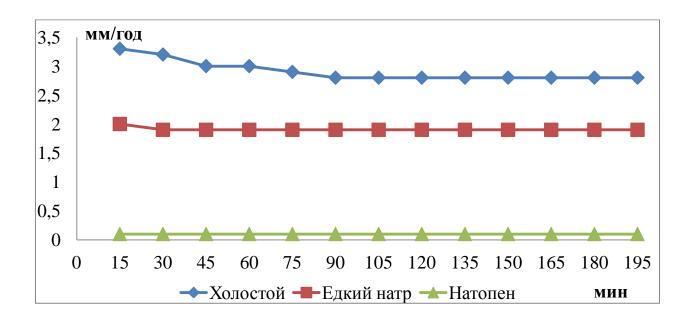


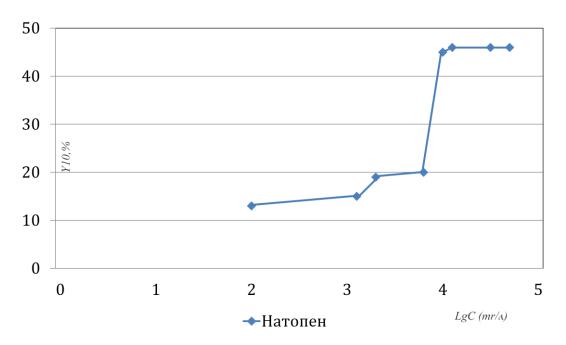
Диаграмма 1 – Коррозионная активность едкого натра и Натопена (электрохимический метод)

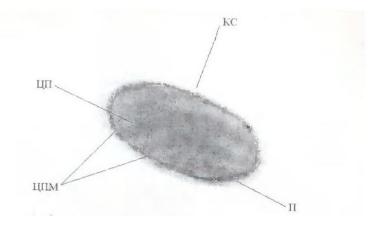
Препарат Натопен, содержащий в своем составе катионоактивный ПАВ, обладает наименьшей коррозионной активностью.

Защитный эффект обусловлен наличием в молекуле ряда адсорбционных центров: в электронном взаимодействии с поверхностными кластерами атомов железа участвуют атомы азота, кислород карбонила, несколько эфирных атомов кислорода полиоксиэтиленовых группировок.

В последнее время перспективным является применение препаратов в виде вспененных форм.

Основными показателями, характеризующими процесс пенообразования дезинфицирующих препаратов, являются ИΧ пенообразующая способность (Πo) И стабильность (устойчивость) полученной пены (Ут). Результаты исследований представлены в диаграмме 2.

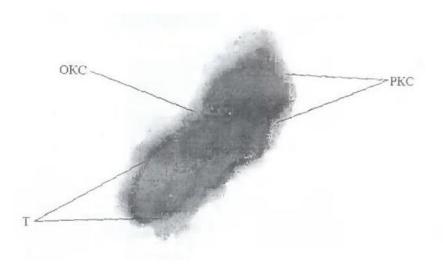



Диаграмма 2 – Зависимость устойчивости пены от концентрации препарата Натопен

Из представленных данных видно, что при содержании 1,0-5,0% Натопена устойчивость пены достигает 45-50%.

2.7 Электронно-микроскопическое изучение ультраструктуры Salmonella pullorum-gallinarum под воздействием дезинфицирующего

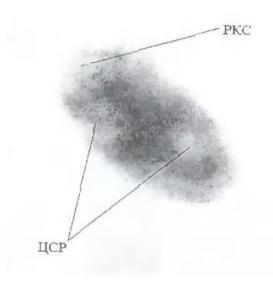
средства Натопен


При разработке дезинфицирующих средств значительное место принадлежит электронно-микроскопическим методам изучения их механизма действия на микроорганизмы. Электронно-микроскопические исследования Salmonella pullorum—gallinarum показали, что сальмонеллы имели типичную для грамотрицательных бактерий ультраструктуру (Рис.1).

увел.×15 тыс.

КС – клеточная стенка; ЦПМ – цитоплазматическая мембрана; ЦП – цитоплазма; П – пространство, отделяющее клеточную стенку от ЦПМ Рисунок 1 – Ультраструктура Salmonella pullorum-gallinarum (контроль)

После воздействия 0,5%-ного раствора препарата Натопен в течение 15 минут на Salmonella pullorum — gallinarum происходило изменение поверхностных структур. При этом наблюдается разрыв клеточной стенки, отдельные участки размыты, происходит незначительное отхождение клеточной стенки от протопласта. Цитоплазма сохраняет свою электронную плотность, уплотняясь к периферии в виде тяжей (Рис.2).


увел.×15 тыс.

РКС – разрыв клеточной стенки; ОКС – отхождение клеточной стенки от протопласта; T – тяжи

Рисунок 2 — Ультраструктура Salmonella pullorum-gallinarum после воздействия 0,5% p-ром Натопена, 15 мин.

Наружная мембрана клеточной стенки заметно разрыхлена, местами размыта; подлежащий слой разрежен. Цитоплазматическая мембрана фрагментарно разрушена. Внутренние компоненты представлены уплотненным и размытым гранулярным материалом (рис.2).

Изучение клеточной стенки Salmonella pullorum — gallinarum после воздействия той же концентрации препарата Натопен в течение 30 минут показало, что поверхностная структура не дифференцируется, наблюдается выход содержимого клетки, характеризующиеся пустотами и обширными участками коагуляции. Цитоплазма полностью размыта и имеет неоднородную структуру — конгломерирована на участки с различной электронно-оптической плотностью, что связано с денатурацией белков. Внутренние структуры подверглись распаду (рис.3).

увел.×15 тыс.

РКС – разрыв клеточной стенки; ЦРС – цитоплазма в стадии разрыхления гранулярного компонента.

Рисунок 3- Ультраструктура Salmonella pullorum—gallinarum после воздействия 0,5% p-ром Натопена, 30 мин.

Проведенные исследования показали, что дезинфицирующее средство Натопен в минимальных концентрациях влияет на структурноморфологическую картину микробной клетки, в частности — разрушения морфологического покрова, клеточной стенки и цитоплазматической мембраны.

1.8 Ветеринарно-санитарная оценка продуктов птицеводства при использовании дезинфектанта Натопен

В связи с вступлением России в ВТО большое внимание уделяется контролю вредных запрещенных И веществ продукции Особое место сельскохозяйственного производства. В ЭТОМ принадлежит ветеринарно-санитарной оценке продукции птицеводства при применении различных химических веществ, В TOM числе И дезинфицирующих средств.

Исходя из этого, была проведена ветеринарно-санитарная оценка

продуктов птицеводства при использовании дезинфицирующего средства Натопен для влажной дезинфекции.

Анализ полученных данных ветеринарно-санитарной оценки мяса бройлеров, выращенных в производственных помещениях птичников, подвергнутых дезинфекции препаратом Натопен, показал, что дезинфектант не оказывает отрицательного влияния на органолептические и биохимические показатели мяса птиц.

Мясной бульон и вареное мясо опытной птицы, забитой через сутки после заселения продезинфицированного Натопеном птичника не отличались от мясного бульона и вареного мяса контрольной группы. Мясо птицы является безвредным и соответствует ГОСТам 31470-2012, 31931-2012 и Р 51944-2002.

Яйцо, согласно проведенным исследованиям, отвечает нормам гигиенических требований по качеству и безопасности производственного сырья и пищевых продуктов, а по принципу сортировки, качеству и весу соответствуют 1 категории.

Таким образом, результаты органолептических и биохимических исследований мяса бройлеров и яйца кур, содержащихся в производственных помещениях после проведения влажной дезинфекции препаратом Натопен, свидетельствуют, что дезинфектант не оказывает отрицательного влияния на продукцию птицеводства, и она соответствует нормативно-техническим требованиям.

1.9 Производственные испытания препарата Натопен при откорме бройлеров, выращиванию ремонтного молодняка и содержания родительского стада

Производственные испытания Натопена в помещениях для бройлеров на всех этапах исследований показали, что качество дезинфекции удовлетворительное. В пробах, взятых с пола, стен, кормушек и поилок после ее проведения, роста санитарно-показательных микроорганизмов не выявили. При этом Натопен применяли в 2%-ной концентрации, а формалин, взятый в

качестве контроля – в 4%-ной.

Одна из важнейших задач обеспечения благополучия птицеводства — санация воздушной среды. В основном это достигается аэрозольной обработкой. В нашу задачу входило изучить влияние влажной дезинфекции Натопеном на бактериальную обсемененность воздушной среды. В качестве контроля служил формалин, применяемый в данном хозяйстве (таблица 10).

При сравнительном изучении влажной дезинфекции производственных помещений (цеха по выращиванию бройлеров, ремонтного молодняка, родительского стада) 2%-ным раствором Натопена во всех случаях существенно снижалась бактериальная обсемененность воздушной среды независимо от цехов и места взятия проб. При этом в начале зала эффект санации Натопеном составлял 76-91%, в середине — 51,5 -90,6% и в конце зала — 76,8-91% в зависимости от специализации птицеводческого помещения. Показатель при влажной дезинфекции 4%-ным раствором формалина был значительно ниже и составлял от 24-48%.

На основании проведенных исследований установлена высокая бактерицидная активность и эффективность дезинфицирующего средства Натопен в бройлерном производстве птицеводства. При этом влажная дезинфекция препаратом обеспечивает высокую санацию воздушной среды помещений.

1.10 Экономическая эффективность применения рабочих растворов Натопена в сравнении с традиционно применяемыми дезинфицирующими препаратами

Расчет экономической эффективности применения дезинфицирующего препарата Натопен определен в сравнительном аспекте с препаратами аналогами (формалин, едкий натр, Делеголь, Ган, Вироцид). Экономия составляет 32,8 тыс.рублей в расчете на 10 тыс.м².

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

- 1. На основании проведенных научно-производственных испытаний препарат Натопен предложен в качестве дезинфицирующего средства в промышленном птицеводстве.
- 2. Разработаны И утверждены нормативно-технические документы: Натопена для дезинфекции Инструкция по применению объектов профилактики ветеринарного надзора И инфекционных болезней животных и птиц. Технические условия ТУ 2132-060-54861661-2010. Получен сертификат соответствия РОСС RU.ФВ01.H24913.

ЗАКЛЮЧЕНИЕ

Поиск новых и более экономически эффективных дезинфицирующих средств является приоритетным направлением. Проведенные исследования являются научным обоснованием к применению препарата Натопен для бройлерного птицеводства. Полученные результаты позволили сделать следующие выводы:

- 1. Разработанное на основе четвертичного аммониевого соединения алкилбензиламмоний фракция $(C_{12}-C_{14})$ хлорида едкого натра дезинфицирующее средство Натопен обладает широким спектром антимикробного действия отношении грамположительных, В спорообразующих грамотрицательных микроорганизмов, И включая микроскопические грибы
- 2. Препарат Натопен активен в качестве биоцидной добавки к побелочным материалам.
- 3. В производственных условиях подтверждены высокая дезинфицирующая активность препарата Натопен и эффективность его для птицеводческих помещений: дезинфекция санации воздушной среды птичников с использованием препарата Натопен удовлетворительная (в пробах, взятых с пола, стен, кормушек и поилок, роста санитарнопоказательных микроорганизмов не выявлено); влажная дезинфекция с 2% Натопен санирует использованием препарата воздушную птичников и снижает общую бактериальную обсемененность залов по

выращиванию бройлеров в среднем на 84,5%; по выращиванию ремонтного молодняка — на 83,5%; по выращиванию родительского стада — 66,2%; средний процент снижения обсемененности воздушной среды при применении 4%-ного раствора формалина составляет: 17,3; 27,1 и 18,1% соответственно.

- 4. На основании проведенных исследований установлено, что препарат Натопен обладает высокой антикоррозионной и пенообразующей активностью.
- 5. Препарат Натопен по степени опасности согласно ГОСТу 12.1.007-76 относится к третьему классу опасности умеренно опасным $(LD_{50}$ для белых мышей 1065 мг/кг), не обладает местно-раздражающими и сенсибилизирующими свойствами.
- 6. Ветеринарно-санитарная оценка продуктов, полученных от бройлеров, которые содержались в помещениях, где проводилась влажная дезинфекция препаратом Натопен, показала, что мясо птицы является безвредным и соответствует ГОСТам 31470-2012, 31931-2012 и Р 51944-2002; а полученное от них яйцо отвечает нормам гигиенических требований по качеству и безопасности производственного сырья и пищевых продуктов, а по принципу сортировки, качеству и весу соответствуют 1 категории.
- 7. Препарат Натопен экономически эффективный по сравнению с широко применяемыми средствами, а именно формалин, едкий натр, Делеголь, Ган и Вироцид. Экономический эффект от его применения составляет 32,8 тыс.рублей на 10 тыс.м²

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

1. Угрюмова, В.С. Лечебно-профилактические, зоогигиенические и дезинфицирующие средства по обеспечению благополучия в животноводстве, птицеводстве и звероводстве / В.С. Угрюмова, А.А. Фаткуллова, Л.Н. Гарипов, Р.М. Гайфуллин // Материалы семинаров

«Комплексное обеспечение благополучного развития животноводства» – Казань, 2011 – С.12-19.

- 2. Угрюмова, В.С. Эффективность дезинфицирующего средства Натопен в бройлерном производстве птицеводства / В.С. Угрюмова, А.З. Равилов, А.А. Фаткуллова, Р.М. Гайфуллин, О.В. Угрюмов, Р.Х. Равилов // Ветеринария. 2012. №4. С.15-17.*
- 3. Гайфуллин, Р.М. Ветеринарно-санитарная оценка продуктов птицеводства и животноводства при использовании дезинфектанта Натопен / Р.М. Гайфуллин, Р.Х. Равилов, О.В. Угрюмов, А.А. Фаткуллова, Л.Н. Гарипов // Ученые записки Казанской ГАВМ. 2012. Т.211 С.44-48.*
- 4. Угрюмов, О.В. Изучение коррозионной и пенообразующей активности дезинфицирующего средства Натопен / О.В. Угрюмов, Р.М. Гайфуллин, Р.Х. Равилов, В.С. Угрюмова, А.З. Равилов // Ученые записки Казанской ГАВМ. 2014. Т. 220. С.222-227.*
- 5. Гайфуллин, Р.М. Электронно-микроскопическое исследование ультраструктуры Salmonella pullorum-gallinarum под воздействием дезинфицирующего средства Натопен / Р.М. Гайфуллин // Ученые записки Казанской ГАВМ. 2015. Т.222 (II). С.52-56.*

^{*-}издания, рекомендованные ВАК РФ